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Psychometric functions for motion detection were measured for various spatial velocity profiles made 
of independently moving lines of random dots. In the first experiment, sensitivity was greater for 
square-wave velocity profiles than for sine waves of the same fundamental spatial frequency. Sensitivity 
for square waves depended on the phase of the waveform with respect to the fixation point, which 
precludes a characterization of the processes underlying the detection of shearing motion as a 
translation-invariant system. The second experiment, using velocity fields created by spatial super- 
position of sine waves, showed that motion boundaries facilitate detection of motion due to the 
steepness of the velocity gradient, and not simply because of added power at higher harmonics. In the 
third experiment,, fluted velocity waveforms were created by subtracting the fundamental sinusoidal 
component from square waves, retaining sharp motion boundaries between opposing directions but 
removing the regions of uniform motion. Subtracting the fundamental from low-frequency square 
waves did not lower sensitivity to motion, indicating that sensitivity was largely determined by the 
presence of motion boundaries. In the final section of this article, a model is presented that can account 
for the data by using linear center-surround velocity mechanisms whose sizes increase with eccentricity 
while their sensitivity for shearing motion decreases. 

Motion boundaries Velocity gradients Optic flow field Segmentation Motion sensors 

INTRODUCTION 

To function effectively in the real world, an observer 
must segregate different objects from each other and 
from the background, estimate their position, distance, 
and direction and velocity of motion. A number of 
visual cues, such as luminance, color, shading, texture, 
shape, and disparity, facilitate this task. A particularly 
useful source of information is the image flow field, 
which assigns to each point in the visual field a two- 
dimensional velocity vector that is the projection of the 
instantaneous three-dimensional velocity of the corre- 
sponding point in the scene. For example, Kaplan (1969) 
and Rogers and Graham (1979) showed that observers 
could derive an estimate of the three-dimensional layout 
of a scene from the image flow field alone when shape 
and shading information were minimized by using 
random-dot fields. This derivation must take account of 
the fact that velocity fields in the real world do not have 
a simple structure: some regions in a dynamic scene 
consist of fairly uniform velocities separated by a sharp 
change in velocity, as at the boundaries of fiat objects 
moving in front of a stal:ionary background, while other 
regions have smooth w,qocity gradients, as for a rigid 
rotating cylinder. In addition, different parts of moving 
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objects also move relative to one another as well as 
partially occlude each other, like a runner's limbs and 
torso. We were interested in determining if there exist 
processes that simplify the extraction of spatial infor- 
mation from the velocity fields created on the retina. 
In particular, mechanisms providing an enhanced sensi- 
tivity to velocity discontinuities could be used to segre- 
gate an object from the background and outline its 
shape. In this paper we present experiments and a model 
concerning sensitivity to image flow discontinuities. 

Image flow has been analyzed extensively in the 
machine and human vision literature. The major effort 
has gone into methods of estimating the image flow field 
from image sequences, such as feature matching (e.g. 
Ullman, 1979), correlations (e.g. Reichardt, 1961), 
spatio-temporal gradients (e.g. Horn & Schunck, 1981), 
and spatio-temporal energy (e.g. Adelson & Bergen, 
1985; van Santen & Sperling, 1985; Watson & Ahumada, 
1985). In this study we were interested in the kinds of 
operations that can be performed once the flow field has 
been extracted from a scene. For example, when an 
observer is in motion, the relative velocities of different 
parts of a scene are transformed roughly proportional 
to the distance from the observer in certain cases, 
i.e. motion parallax (Helmholtz, 1925). These relative 
velocities can be used to estimate the relative positions 
of objects in dynamic scenes. In addition, differential 
calculations on a continuous velocity field can be used 
to extract slant and curvature of surfaces (Koenderink 
& van Doorn, 1975, 1976, 1992; Longuet-Higgins & 
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Prazdny, 1980; Hoffman, 1982). Surprisingly, a promi- 
nent aspect of flow fields that has generally been neg- 
lected is the location of velocity discontinuities. In fact, 
many algorithms employed in machine vision tend to 
blur the boundaries of moving objects to facilitate 
computations requiring continuity (Fennema & 
Thompson, 1979; Horn & Schunck, 1981; Bergen, Burt, 
Hingorani & Peleg, 1990). This process degrades infor- 
mation about the shapes of objects. 

A few computational studies have explicitly demon- 
strated the utility of velocity discontinuities. Nesi (1993) 
exploited variational calculus methods that explicitly 
keep track of discontinuities (Mumford & Shah, 1989) 
to retain velocity discontinuities in the estimated optical 
flow. This method helped maintain sharp outlines of 
moving objects in the flow field and thus facilitated 
shape extraction from image sequences. Singh and Allen 
(1992) showed that an estimation-theoretic framework 
based on local neighborhoods that retains information 
about motion boundaries in optic flow fields allows a 
more precise calculation of depth maps of a scene 
than methods which smooth the velocity field at motion 
boundaries. Clocksin (1980) showed that singularities 
in the Laplace transform of the flow field can be used 
to locate object edges. Together with information 
about surface slant, this information can be used to 
reconstruct the shapes of objects. Nakayama and 
Loomis (1974) proposed that a system of subtractive 
center-surround mechanisms operating on the velocity 
field could isolate the boundaries of an object indepen- 
dently of the observer's motion. In regularization 
methods for motion estimation it has become apparent 
that the fit to the true object motion is improved by 
introducing line processes across which smoothing does 
not occur (Shulman & Herv~, 1989; Murray & Buxton, 
1987; Hutchinson, Koch, Luo & Mead, 1988; Black & 
Anandan, 1993). 

Most psychophysical studies of motion perception 
have not been concerned with relative motion. The few 
that have considered relative motion have done so 
without explicit consideration for motion boundaries 
(Graham, Baker, Hecht & Lloyd, 1948; Nakayama 
& Tyler, 1981; Nakayama, Silverman, MacLeod & 
Mulligan, 1985; Nakayama, 1981; Golomb, Andersen, 
Nakayama, MacLeod & Wong, 1985; Snowden, 1992). 
In the most comprehensive set of studies on this issue, 
Nakayama and Tyler (1981) and Nakayama et al. 

(1985) measured sensitivity to motion of sinusoidal 
velocity fields consisting of random dots. Sensitivity was 
measured for different spatial frequencies of the velocity 
field, and a bandpass relationship was found: sensitivity 
was greatest for spatial frequencies around 0.4 c/deg, 
and decreased for higher and lower frequencies. This 
bandpass function suggests that local velocity responses 
across visual space are neither independent nor simply 
added together. Though sensitivity decreases for high 
frequencies measured in isolation, it is possible that 
high-frequency components could enhance sensitivity 
when they are combined to produce sharp motion 
boundaries. An explicit analysis of motion discontinu- 

ities would therefore require additional measurements of 
sensitivity to combinations of frequency components. 

There is, however, some empirical evidence that the 
visual system possesses special sensitivity for discontinu- 
ities in a velocity field. Zaidi and Sachtler (1992) 
measured direction-selective contrast thresholds for 
narrow strips of moving vertical gratings before and 
after adapting to moving gratings of the 
same orientation and spatial frequency as the test. In the 
first condition the adapting grating was 36 times the 
height of the test. The second condition was identical to 
the first except that the adapting grating was interrupted 
by a uniform bar within the test region, i.e. the test 
region was not exposed to the adapting grating but 
the motion boundaries at the edges of the test coincided 
with the motion boundaries of the adapting stimulus. 
Thresholds were elevated more following adaptation 
with the stimulus containing a uniform gap than with the 
stimulus which covered the test completely. Sachtler and 
Zaidi (1993) measured psychometric functions for 
motion of high-contrast sinusoidal gratings before and 
after adaptation to gratings moving in one direction. 
The adaptation effect was maximal when adapting and 
test gratings had the same dimensions, and decreased as 
the size of the adapting field was enlarged beyond that 
of the test. These results indicate that motion boundaries 
play a more important role in the detection of the test 
than the uniform velocity interior. Consistent with this 
interpretation are recent studies showing a greater sensi- 
tivity for shearing than for unidirectional motion 
(Sachtler & Zaidi, 1990; Snowden, 1992; Sachtler & 
Zaidi, 1994). 

Experiments employing random-dot patterns have 
shown that vernier acuity is similar for motion-defined 
and luminance-defined stimuli that are normalized for 
sampling density and perceived contrast (Regan, 1986; 
Banton & Levi, 1993). Thus, if motion boundaries are 
extracted at some stage in the visual system, they may be 
used at a later stage to segment dynamic scenes with 
good spatial resolution. 

These studies, however, did not provide direct 
evidence for, or against, processes that may be special- 
ized to extract information at motion boundaries. In 
this study we compared sensitivity to different spatial 
forms of velocity gradients in an attempt to determine if 
motion boundaries are given special consideration in 
the visual system, i.e. whether sensitivity to motion is 
greater when stimuli contain sharp motion boundaries as 
opposed to more gradual spatial gradients of velocity. 
To do this, we compared sensitivity to horizontal shear- 
ing motion for various spatial velocity profiles made 
of independently moving lines of random dots, with the 
velocity of each line of dots being set by a vertical 
waveform. 

In the first experiment we measured sensitivity 
for square-wave and sinusoidal velocity profiles at differ- 
ent phases and spatial frequencies. In the second 
experiment we used velocity fields created by spatial 
superposition of two sine waves. In the final experiment 
we created fluted velocity waveforms by subtracting the 
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fundamental sinusoidal component from square waves, 
retaining sharp motion boundaries between opposing 
directions but removing the regions of  uniform motion. 
In the final section of  this article we present a model 
that can account for the data by using linear center-  
surround velocity mechanisms whose sizes increase with 
eccentricity while their sensitivity for shearing motion 
decreases. 

(a) I 7.5 deg 

Equipment and stimulus generation 

For all the experiments in this study, stimuli were 
presented on a 1280 x 1024 pixel 19 in. color monitor 
running at a rate of  60 frames/sec. The display was 
driven by a Silicon Graphics Personal Iris that permitted 
8-bit specification of  the intensity of  each gun. To ensure 
linear control of  the luminance generated on the screen 
the output of  the three TV cathode guns was gamma- 
corrected by means of look-up tables. Mean luminance 
for all conditions was 34 cd/m 2. 

Stimuli consisted of random-dot fields presented 
within a 7.5 x 7.5 deg window surrounded by a 0.5 deg 
uniform border at mean luminance, as shown schemati- 
cally in Fig. l(a). The &isplay window covered a region 
of  900 x 900 pixels. Since each random dot was allocated 
10 x 10 pixels, there were 90 rows and columns of  dots. 
Half  of  the 8100 available dots were randomly assigned 
to be light, the other half were kept dark. This produced 
a random field with no apparent structure, minimizing 
familiar position cues. Each line was begun at a random 
position outside the visible window so that dots would 
not fall within a strict rectangular array. Shearing 
motion was produced by moving horizontal lines of dots 
at different velocities, and a waveform was used to 
set the velocity on each line according to its vertical 
coordinate. In this way, ,different spatial velocity fields of  
horizontal motion could be produced. No compression 
took place since all dots on a line moved at the same 
velocity. Moving dots disappeared behind the edges of  
the stimulus window, i.e. the edges of  the window were 
not warped. 

Under the conditions of  this study, measurements of 
motion threshold required that each stimulus element be 
moved less than 1 pixel per frame. Since motion appears 
jerky if stimulus elemenl:s are held stationary for several 
frames and then moved by 1 whole pixel, the method 
described below was used to generate continuous motion 
on each frame. Each dot was 7 pixels wide, and its edges 
had a slanted luminance profile as shown by the thick 
line in Fig. 1 (b). This luminance profile was repeated for 
10 lines of pixels in the vertical direction, so dots were 
10 pixels tall x 7 pixels wide, as indicated in Fig. l(c). 
Pixels at the peak of the luminance profile were 
at maximum luminance (68cd/m2). High-contrast 
stimuli were used to avoid velocity-contrast tradeoffs 
(Thompson, 1982; Hawken, Gegenfurtner & Tang, 
1994). In order to move a dot to the left, the luminances 
of the pixels on the left side were increased, while the 
luminances of the pixels on the right side were decreased 
by the corresponding amount, as shown by the small 
arrows in Fig. l(b). A dot could be moved a fraction of  
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F I G U R E  1. (a) Schematic of  random-dot  stimuli employed in this 
study. Half  of  the 8100 available dots were light, the others were dark. 
Each of  the 90 horizontal lines of  dots could move at an independent 
velocity, and each line was started at a random position so that dots 
did not  fall within a strict rectangular array. The 0.5 deg wide surround 
was at mean luminance (34cd/m2). The stimuli were viewed in a 
dark room. (b) Luminance profiles of  two adjacent dots as used in 
the random-dot  display. Luminance is given on the vertical axis. The 
luminance distribution of  a dot  could be shifted by increasing 
the luminances of  pixels on one edge while decreasing the luminances 
of the pixels on the other edge, as indicated by the small arrows. The 
resulting motion of  the dots is indicated by the leftward arrow. A dot 
could be moved a fraction of  a pixel by using a small luminance 
change. In order to give dots room to move, 3 pixels adjacent to each 
dot remained dark until they were lit up as needed to generate the 
luminance profile of  the moving dot. (c) Frontal  view of  the dots whose 
luminance profiles are given above. The luminance profiles were 
repeated for I0 pixels in the vertical direction to generate dots with 
the dimensions shown. Motion was restricted to the horizontal 

direction. 

a pixel by making a small luminance change. In order to 
give dots room to move, 3 pixels adjacent to a dot 
remained dark at the beginning of  a trial so that adjacent 
dots were separated by a dark region, as shown in 
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Fig. l(c). During a trial, these pixels were lit up as needed 
to generate the luminance profile of  the moving dot. 
This method introduces a slight asymmetry into the 
luminance profile of  the dot during motion, though 
the average luminance remains roughly constant and the 
asymmetry is not perceptible under the conditions used 
here. Each dot was restricted to a region 10 pixels square 
and could only move left or right. 

The distance between the screen and the observer 
was kept constant at 181cm by means of  a fixed 
forehead and chin rest. At that distance, each pixel 
subtended 0.5 arc min, so that each dot was 5 arc min 
tall 3.5 arc min wide, as shown in Fig. l(c). The screen 
was viewed binocularly, and artificial pupils were not 
used. 

Observers 

Two observers participated in the experiments. 
Observer WLS, one of the authors, was emmetropic, 
tested color normal on the Farnsworth-Munsel l  100-hue 
test, and had extensive experience with psychophysical 
experiments. Observer AI, who was naive regarding the 
purpose of  the experiments, was emmetropic, had pre- 
vious experience with psychophysical experiments, and 
was given extensive practice to become acquainted with 
the psychophysical task employed in this study. 

E X P E R I M E N T  1 

For the square wave at fl ,  shown in Fig. 2(b), all dots 
above the fixation point moved at one velocity, while all 
dots below the fixation point moved at the same speed 
but in the opposite direction. A motion boundary was 
defined at the fixation point by adjacent lines of  dots 
moving in opposite directions. In the even phase presen- 
tations, the peak of  the sine wave [Fig. 2(c)] or the middle 
of  the uniform velocity region of  the square wave 
[Fig. 2(d)], i.e. the highest velocity, was at the fixation 
point. 

Three spatial frequencies of  the velocity field were 
tested: 0.133, 0.4, and 1.2c/deg. Exactly one cycle of  a 
0.133 c/deg waveform fit within the display window, and 
the higher frequencies were 3 and 9 times that frequency. 
These frequencies will be referred to as fl ,  t3, and t9 
throughout the paper. The waveforms for the different 
frequencies are shown schematically in the three rows 
in Fig. 2. Square waves are designated fl,  13, and 
19 according to the frequency of the fundamental 
harmonic. 

Rightward motion was designated as positive velocity 
and leftward as negative. The amplitude of the velocity 
waveform was defined as one half  the difference between 

fl In Expt 1 we measured sensitivity to motion 
of  random-dot  stimuli with sinusoidal or square-wave 
velocity fields for three spatial frequencies of  the velocity 
waveforms, and for odd or even symmetric phases 
around the fixation point. These conditions allowed 
sensitivity to motion for stimuli with sharp motion 1:3 
boundaries to be compared to sensitivity to fields with 
more gradual spatial changes in velocity. Stimuli at 
different phases varied the eccentricity of  the peak 
velocity and of  motion boundaries, and provided infor- 
mation about  differential sensitivity to these two types t9 
of  motion information across retinal coordinates. 

Stimuli 

Four  types of  velocity waveforms were used in Expt 
1: sine waves and square waves in odd and even phases 
around a central locus of  fixation (Fig. 2). For  illus- 
tration purposes, the amplitudes of  the waveforms in the 
diagram are scaled according to the threshold values 
found experimentally, and will be described later. For  
the sine [Fig. 2(a)] and square [Fig. 2(b)] waves presented 
in odd phase, the zero-crossing was located at the 
fixation point in the center of  the screen, which is 
indicated by a circle. As indicated by the arrows in the 
diagrams, dots above and below the fixation point 
moved in opposite directions. For  the sine wave at fl ,  
shown in Fig. 2(a), dots on the horizontal lines near the 
fixation point moved slowly, while dots further away 
moved the fastest, as indicated by the peaks of  the 
sinusoidal curve. The velocities of the dots decreased 
again for lines nearer the edges of  the stimulus window. 

(a) (b) (c) (d) 
sin odd square odd sin even square even 

r- ''1 -i 

r . , ,  ~ c ''I 

c 

FIGURE 2. Spatial velocity waveforms used to set the velocity for 
each line of dots in the stimulus for Expt 1. The height of each profile 
corresponds to the vertical extent of the random-dot stimulus. The 
horizontal deviation of the solid curve from the center line corresponds 
to the velocity of the row of dots at a given location. Arrows indicate 
the direction of motion. The amplitude of a waveform was defined as 
half the difference between the peak and trough velocities. Sensitivity 
to motion was measured for different amplitudes of the waveforms. 
Waveforms in the diagram are scaled according to their amplitude at 
threshold (82% correct), as described in the text. Each waveform was 
tested at three spatial frequencies designated fl, 13, and f9, respect- 
ively, where the two highest frequencies were 3 and 9 times the 
fundamental. An integer number of cycles fit within the display 
window in each case. (a) Sinusoidal velocity fields in odd phase with 
respect to the fixation point (indicated by a circle). (b) Square-wave 
velocity fields in odd phase, i.e. the motion boundary between oppos- 
ing directions of motion is at the fixation point. (c) Sinusoidal velocity 
fields in even phase. In this case, the peak velocity is at the fixation 
point. (d) Square-wave velocity fields in even phase. Peak velocity is 

at the fixation point. 
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F I G U R E  3. Temporalt sequence from left to right of  two-interval forced-choice procedure. Each trial began with a blank screen 
at mean  luminance with a central fixation spot. The two test intervals were presented for 100 msec each separated by a 1.7 sec 
blank field. One test contained a field with a velocity profile, the other contained a stationary random-dot  field. A different 
random-dot  field was generated for each test presentation. The fixation dot  was removed during the presentation of  each test, 
and remained off after the second presentation until the observer made a response. The observer had to indicate which test 

interval contained the moving stimulus, and was instructed to guess when unsure. 

the peak rightward and the peak leftward velocities. 
Since an integer number of  cycles was used in all cases, 
the d.c. velocity component integrated across the screen 
was always zero. 

Procedure 

A two-interval forced-choice procedure, shown in 
Fig. 3, was used: in one test interval the dots moved 
at velocities determined by a vertical spatial velocity 
waveform as indicated by the arrows, while in the 
other the random-dot  field was stationary. The order of 
stationary and moving stimuli was randomized on each 
trial. A trial began with a uniform screen at mean 
luminance, with a red fixation spot of 5 arc min diameter 
at the center of the screen. Three equally spaced tones 
cued the presentation of  the test stimulus. The first test 
was presented for an interval of  100 msec at a constant 
velocity amplitude, which was equal to zero if it was the 
"stat ionary" interval. The screen was then immediately 
changed to a uniform field at mean luminance. 
After 1.7sec the second 100msec test interval was 
presented. A different random-dot  field was generated 
for each test presentation. The fixation dot was removed 
during the presentation of each test, and remained off 
after the second presentation until the observer made a 
response. The observer had to indicate which test inter- 
val contained the moving stimulus, and was instructed to 
guess when unsure. A short tone sounded if the correct 
choice was made. 

Psychometric curves for the detection of  motion 
were measured for different velocity fields. Different 
amplitudes of  the velocity waveform were presented for 
each condition, and the proportion of  correct responses 
at each amplitude was recorded. Data for observer 
WLS were collected over eight sessions for a total of  80 
presentations of  each velocity for each stimulus. For  
observer AI, 50 trials were run over 10 sessions. In each 
session, data were collected for the two types of  wave- 
forms and their two phases at one spatial frequency. The 
four conditions and all velocity amplitudes tested were 
interleaved randomly. In addition, the sign of  the wave- 
form was varied at random, e.g. for sine odd at fl,  the 
lobe above the fixation dot could move either left or 
right, with the direction of the other lobe in opposition 

to that. Data were collected for a discrete set of velocities 
chosen by pilot runs to cover the complete psychometric 
range. 

The test stimuli were presented for 100 msec because 
this is shorter than the time needed to initiate pursuit 
movements (Westheimer, 1954). The test stimulus moved 
throughout its presentation time, i.e. it was not station- 
ary before and after the test motion. This is similar to 
opening and closing an aperture behind which a pattern 
moves at a constant velocity. 

Results 

Psychometric curves for the detection of motion for 
different velocity fields are shown in Fig. 4 for observer 
WLS and in Fig. 5 for observer AI. Each panel compares 
psychometric curves for the two waveforms shown 
schematically at the top of  the column. Each psychomet- 
ric curve is presented in two of the columns to allow 
different comparisons to be made. Each row in the 
figures shows all the psychometric curves at one spatial 
frequency, fl,  13, or 19, with the lowest frequency in the 
top row. Amplitudes of the velocity waveforms are 
indicated on the abscissa in deg/sec. Since all the wave- 
forms were symmetric around zero velocity, the ampli- 
tude of each velocity waveform, (max - min)/2, is equal 
to the maximum absolute velocity present in the stimu- 
lus. The percentage of correct responses is shown on the 
ordinate. Chance performance is indicated by the dotted 
line at 50% correct in each panel. 

The experimental results were fit with the following 
psychometric function (Quick, 1974; Watson, 1986): 

P = l - - ½ e x p  -- , (1) 

where P is the probability of  a correct choice, v is the 
velocity amplitude of the test stimulus, to fixes the curve 
to a threshold velocity amplitude (at 82% correct), and 
x controls the slope of the function. 

A maximum-likelihood estimator was used to deter- 
mine the best fit to each psychometric curve by assuming 
a binomial distribution of responses around the prob- 
ability given by equation (1) (Hoel, Port  & Stone, 1971; 
Watson, 1979). A Nelder-Mead (Nelder & Mead, 1965) 
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error-minimizat ion routine was used to find the par- 
ameter  settings giving the best fit to each psychometr ic  
curve. The curves fit the data  well (X 2, p < 0.05). The 
only exception is for sine even at fl for both observers, 
where the absence o f  a good  fit seems to be due to noise 
in the data. 

For  each panel we tested whether the two psychomet-  
ric functions o f  each compar ison  pair  could belong to the 
same distribution. A single curve (not shown) was fit to 
the two sets simultaneously by the same procedure 
described above. The quality o f  the simultaneous fit was 
compared  to the fit with two separate curves by trans- 
forming the likelihoods (L )  obtained for these two 
condit ions according to the following equation: 

( L(da ta l s ing le  curve) ) 
2 = - 2  In L (data I independent  curves) " (2) 

In this way, 2 is distributed as X 2 with two degrees o f  
f reedom (Hoel et al., 1971). I f  2 exceeded the criterion 
value (for P = 0.05) we concluded that  a single curve 
gave a significantly worse fit to the two data  sets than 
two separate curves. 

Results for the two observers were qualitatively 
similar, and statistical tests gave similar results in most  

cases. Therefore, we discuss the results for observer WLS 
shown in Fig. 4; we address the results for observer AI  
only when they differ qualitatively f rom results for 
observer WLS. 

In Fig. 4(a) we compare  sensitivity to mot ion  of  
square wave and sinusoidal velocity fields in odd phase, 
i.e. when the boundary  between opposing directions was 
at the fixation point  for both  waveforms. Results for odd 
phase square waves are shown as solid squares, and 
results for odd phase sine waves as solid circles. At  the 
lowest frequency, f l ,  the psychometr ic  curve for the 
detection o f  mot ion  for the square-wave velocity field 
is to the left o f  the curve for  the sinusoidal velocity 
field. That  is, sensitivity is greater for the stimulus with 
the sharp mot ion  boundary .  For  frequencies f3 and 
f9 (bot tom two panels), sensitivity for the sinusoidal 
velocity field is progressively greater, though  it remains 
less than for  the square wave. Separate curves for the 
two waveforms provided the best fit to the data  at all 
frequencies. 

In a separate analysis that  is not  illustrated in this 
figure we found that  the psychometr ic  curves for the 
square wave in odd phase for f l ,  f3, and f9 were very 
similar. Compar isons  o f f l  with f3 and fl with f9 showed 
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FIGURE 4. Results of Expt 1 for observer WLS: psychometric curves for the detection of motion for the velocity fields shown 
in Fig. 2. Each panel compares psychometric curves for the two velocity waveforms shown at the top of each column, with 
plot symbols as indicated above each waveform. Each set of results is repeated in one other panel for a different comparison. 
Each row of panels shows results at one spatial frequency, as indicated on the left (fl = 0.133 c/deg, f3 = 0.4c/deg, 
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all experiments in this study, 80 trials were run for each data point for observer WLS. Solid curves show the best fitting 

psychometric functions from equation (1) to each data set. 
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that a single curve provided a satisfactory fit to each pair 
of results. Only the data for f3 and f9 was best fit with 
two separate curves. 

Results for square wave velocity fields in odd and 
even phase are shown as solid and open squares, 
respectively, in Fig. 4(b). For  fl ,  the psychometric curve 
for the even phase velocity field is to the right of 
the curve for the odd phase velocity field. Thus, for 
velocities around 0.04deg/sec, motion is detected in 
approx. 90% of  trials when the motion boundary is 
at the fixation point, while performance is only slightly 
above chance when it is not. For  the even phase, 
the motion boundary was at 1.9 deg eccentricity. For  
higher frequencies there are additional motion bound- 
aries in the stimulus and at least two of them are closer 
to the fixation point. As shown in the bottom two 
panels, sensitivity is greater at higher frequencies for the 
even phase stimuli, whereas for the odd-phase stimuli it 
is roughly constant. Data for the two waveforms were 
best fit with two separate curves at fl and f3, while 
at f9 a single curve provided a satisfactory fit to the 
data. 

In Fig. 4(c) we compare results for sinusoidal and 
square-wave fields in even phase, shown as open circles 
and squares, respectively. Both stimuli have their peak 
velocity at the fixation point. Sensitivity to square waves 
is slightly higher than for sine waves at all frequencies. 
The data sets for the two waveforms were best fit with 
two separate curves at all frequencies. 

In Fig. 4 (d), results are shown as solid and open 
circles for sine-wave velocity fields in odd and even 
phase, respectively. In odd phase, the peak velocity is 
at 1.9 deg eccentricity, while in even phase it lies at 
the fixation point. Psychometric curves for the two 
conditions are similar to each other at each frequency 
tested for observer WLS (Fig. 4), and a single curve 
provided a satisfactory fit to the two data sets. For  
observer AI (Fig. 5), the psychometric curve for the sine 
even waveform lies to the right of the curve for the sine 
odd waveform and the data is best described with two 
separate fits. 

Discussion 

The results of  Expt 1 show that sensitivity to motion 
is greater when the stimulus contains sharp motion 
boundaries than when changes in velocity across space 
are more gradual. An alternate explanation could be 
that one lobe of  a square wave has a larger area than one 
lobe of a sine wave of  the same amplitude, and that 
thresholds are proportional to the integrated area for 
motion. This hypothesis would imply that thresholds 
would be the same when the areas of  the lobes are the 
same. The waveforms shown in Fig. 2 have been scaled 
according to threshold amplitude, i.e. the peak velocity 
at a value of 82% correct for observer WLS. At 
threshold, not only is the amplitude of  the square wave 
smaller than of  the sine wave, but so is the area of  each 
lobe, thus refuting this hypothesis. 
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F I G U R E  5. Results of  Expt 1 for observer AI. All graphical conventions are identical to Fig. 4. For  all experiments in this 
study, 50 trials were run for each data point for observer AI. 
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Another measure of  the availability of  motion infor- 
mation is the root-mean-square (r.m.s.) value of  the 
velocity amplitude, calculated as the square root of  the 
integral of  the square of  the waveform, divided by 2z~ 
(Lenert, 1970). Taking the 82% correct point from 
the best fit of  equation (1) as the threshold velocity, the 
r.m.s, values for the square and sine waves at frequency 
fl are 0.012 and 0.022, respectively, for observer WLS, 
and 0.011 and 0.053 for observer AI. For  both observers, 
the r.m.s, value at threshold is less for the square wave 
than for the sine wave, and thus cannot account for 
the greater sensitivity to motion when the square- 
wave velocity profile is presented. The possible effects of  
available integration area will be addressed further in 
Expt 3. 

The processes underlying motion detection in this task 
cannot be characterized as a translation-invariant system 
because sensitivity to motion for the fl square waves 
in even and odd phases is greater when the motion 
boundary is at the fixation point than when it is at 
1.9 deg eccentricity. The difference between the sensi- 
tivity for odd and even square waves is greater than the 
difference between the sensitivities for odd and even sine 
waves, indicating a greater inhomogeneity for the 
detection of  sharp velocity discontinuities than for the 
detection of relatively shallow velocity gradients. 

Nakayama  et al. (1985), Nakayama  and Tyler (1981) 
and Golomb et al. (1985) found a bandpass relationship 
for sensitivity to shearing motion with sinusoidal vel- 
ocity fields of  various frequencies: thresholds were lowest 
for spatial frequencies around 0.4 c/deg, and increased 
for frequencies higher and lower than that. Their 
task differed from ours in many aspects, including that 
stimuli were presented for a longer time interval and 
dots oscillated back and forth. Figure 6 shows velocity 
thresholds for sine waves and square waves in odd 
phase from Expt 1 for both of our observers. Thresholds 
for sine waves are shown as circles, and results for 
square waves as squares. Thresholds were chosen as 
the 82% point of  the best fit of  equation (1) to each 
psychometric curve. The lowest three frequencies shown 
correspond to fl ,  f3, and f9. The highest frequency data 
correspond to psychometric curves measured for an 
additional square wave velocity field at f22.5 (3 c/deg), 
whose period length consisted of  two lines of  dots 
moving in one direction and two lines in the other 
direction. Sensitivity to square waves and sine waves at 
f22.5 is expected to be similar, since the results of  Expt 
1 showed that sensitivity to sine waves increases with 
increasing spatial frequency and approaches that of  
square waves at f9. The functional form of our results 
is similar to that of  Golomb et al. and Nakayama  et al. 
in exhibiting the bandpass characteristic for sine waves. 
The minimum of these curves lies in the range of  
0.4-1.2 c/deg, which is similar to the results found in 
other studies. The curves for the odd-symmetric square 
waves are low-pass and always below the sine wave 
curves. It seems that a sharp boundary at the fixation 
point leads to maximal sensitivity until the integration 
area is reduced drastically as for f22.5. 
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FIGURE 6. Velocity thresholds from Expt 1 for odd phase sinusoidal 
and square-wave velocity fields for both observers. Thresholds for sine 
waves are shown as circles, and results for square waves as squares. 
Thresholds were chosen as the 82% point of the best-fitting psychomet- 
ric function for each data set taken from Figs 4 and 5. The lowest three 
frequencies correspond to fl, 13, and I9. Data for the highest frequency 
correspond to psychometric curves measured for an additional square- 
wave velocity field at 3 c/deg. Straight lines connect points of each data 

set for graphical purposes and have no theoretical significance. 

EXPERIMENT 2 

The results of  Expt 1 indicated that the processes 
underlying detection of  shearing motion cannot be 
characterized as a shift-invariant system. However, it is 
possible that the individual frequency components do 
determine sensitivity for stimuli with zero-crossings 
at the same retinal location. A square wave contains 
the odd-numbered higher harmonics in addition to the 
fundamental frequency. Since sensitivity to sine waves 
f3 and f9 was greater than for fl ,  sensitivity to motion 
may have been higher for the fl and f3 square waves 
because of the presence of  the higher frequencies. In 
this experiment we explore whether the presence of 
higher harmonics is sufficient to increase sensitivity for 
a compound stimulus, or whether increased sensitivity 
results from amplitude and phase combinations that 
generate sharp velocity gradients. In particular, we su- 
perimposed pairs of  sinusoidal velocity fields in two 
different relative phases to produce either a steeper 
velocity gradient between opposing directions of  motion 
or to produce a greater peak velocity. The empirical 
results were then compared with predictions from prob- 
ability summation of  the responses to the individual 
components.  

St imul i  

In Expt 2, sine waves of  two different frequencies were 
combined to form composite velocity waveforms. 
All sine waves were in odd phase, so that the zero- 
crossings were at the fixation spot. The same component  
frequencies were used as in Expt 1 (fl = 0.133 c/deg, 
f3 = 0.4c/deg, f9 = 1.2 c/deg). Sine waves were com- 
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(a) (b) 

+ fl f3 + fl f3 
.:~/:" 

FIGURE 7. Velocity fields used in Expt 2. Sine waves of two different 
frequencies were superimposed to form composite velocity waveforms. 
All sine waves were in odd phase, so that the zero-crossings were at 
the fixation point. The same component frequencies as in Expt 1 were 
used (fl = 0.133 c/deg, f3 = 0.4 c/deg, t9 = 1.2 c/deg). Sine waves were 
combined by simple addition or subtraction of the components to yield 
four waveforms: fl + 13, t3 + 19, fl - f3, f3 - 19. The second member 
of a pair of frequencies was al~ays the third harmonic of the first, and 
its amplitude was set equal to one-third of the amplitude of the 
fundamental. (a) Addition of the weighted components (top) leads to 
waveforms approximating square waves (bottom). (b) Subtraction of 
the weighted components (top.) produces waveforms approximating 

triangular profiles (bottom). 

bined by simple addition or subtraction of  the com- 
ponents to yield four waveforms: fl + f 3 ,  f3 + f 9 ,  
fl - f3, f3 - f9. The second member  of  a pair of  fre- 
quencies was always the third harmonic of  the first. The 
amplitude of  the third harmonic was set equal to one- 
third of  the amplitude of  the corresponding fundamen- 
tal. Addition of  the weighted components,  shown in the 
top panel of  Fig. 7(a), leads to the waveforms approxi- 
mating square waves shown in the bot tom panel. Sub- 
traction of the weighted components,  top panel in 
Fig. 7(b), produces waveforms approximating triangular 
profiles shown in the bot tom panel. The maximum 
velocity gradient in the waveform approximating a 
square wave is steeper than in the more triangular 
profile, whereas for the same amplitudes of  the com- 
ponents, fl - f 3  has a peak velocity that is a factor of  
1.4 higher than fl + f3. '~ 

Procedure 

The same two-interval forced-choice procedure as in 
Expt 1 was used. Both types of  waveforms at the two 
fundamental  frequencies, fl and f3, and all test velocities 
were interleaved randomly within each test session. For  
observer WLS, data were collected over eight sessions 

*In the literature, the fl + t3 condition, which involves the addition of 
two sine waves of the same phase, is sometimes called the "peaks 
subtract" condition. Similarly, the fl - f3 condition, where a sine 
wave is subtracted from another sine wave of the same phase, is 
sometimes called the "peaks add" condition. 

for a total of  80 presentations of  each velocity. For  
observer AI, 50 trials spread over 10 sessions were run 
for each condition. 

Results 

Psychometric curves for the two combinations of  
sinusoidal velocity waveforms are shown in Fig. 8 for 
observer WLS and in Fig. 9 for observer AI. The top 
rows show results for combinations of  frequencies fl  
and f3, while the bot tom rows show results for combi- 
nations of  f3 and f9. Results for fl + f3 and f3 + f9, 
which approximate a square wave, are shown as half- 
shaded squares, while results for f l -  f3 and f 3 -  f9, 
which have a more triangular profile, are shown as open 
triangles. 

In Figs 8(a) and 9(a), results are plotted in terms of  the 
peak amplitude of  the combined waveform. For  both 
waveforms, the velocity on the abscissa is equal to the 
maximum absolute velocity present in the stimulus. 
The best fitting psychometric functions from equation 
(1) for each data set are shown as solid lines. For  the fl,  
f3 combinations, sensitivity to motion is greater when 
the velocity field approximates a square wave than when 
it has a more triangular profile. For  the f3, f9 combi- 
nations, the psychometric curves for the two combi- 
nations are closer together, though squares still plot to 
the left of  triangles. For  both observers, each pair of  data 
sets was best fit with two separate curves. 

In Figs 8(b) and 9(b), the same data are re-plotted in 
terms of the amplitude of the fundamental frequency of 
the velocity waveform. Since the amplitude of  the third 
harmonic was set as one-third of  the amplitude of the 
fundamental,  the amplitudes of  both component  fre- 
quencies are equated for the two conditions. The peak 
amplitudes of  the combined waveforms differ by a factor 
of  1-4. When plotted on this scale, psychometric curves 
for the two conditions lie closer together for fl ,  f3 in the 
top panel, and are superimposed for f3, f9 in the bot tom 
panel. In the top panel, squares lie to the left of  triangles, 
indicating a greater sensitivity to the stimulus approxi- 
mating a square wave than to the more triangular 
waveform. For  both observers, the data were best de- 
scribed by two separate fits for the fl ,  f3 combinations, 
while for the f3, f9 combinations a single curve provided 
a satisfactory fit to the data. In Figs 8(c) and 9(c) the 
sensitivity to the two waveforms can be compared to the 
dashed lines showing the results predicted from prob- 
ability summation of independent responses to the fun- 
damental and the third harmonic. The independent 
responses to the component  frequencies were estimated 
for each observer from the fits to the data for sine waves 
in odd phase for fl ,  f3, and f9 shown in Figs 4 and 5. 
For  the fl,  f3 combinations, the curve predicted from 
probability summation lies between the data sets, but its 
fit to each data set could be rejected (Z 2, for P = 0.05). 
For  the f3, f9 combinations, the predictions f rom prob- 
ability summation fit both data sets well for observer 
WLS. The curve for probabili ty summation does not 
provide a good fit to the psychometric curve for f3 + f9 
for observer AI, but does for f 3 -  f9. 
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FIGURE 8. Results of Expt 2 for observer WLS. Each panel shows psychometric curves for the detection of motion for sums 
of sinusoidal velocity components approximating a square wave (squares), and for differences of components with a more 
triangular profile (triangles). The waveforms are shown above the plots. Results for combinations of fl and 13 are shown in 
the top row, and those for f3 and f9 in the bottom row. (a) percent correct plotted against the peak amplitude of each composite 
waveform shown at the top. Solid curves show the best fitting psychometric function from equation (1) to each data set. (b) 
The same data as in (a) re-plotted in terms of the amplitude of the fundamental frequency of each velocity waveform. Since 
the third harmonic is always at one-third of the amplitude of the fundamental, the amplitudes of both component frequencies 
are equated for the two compound stimuli on the abscissa. Solid curves show the best-fitting psychometric function from 
equation (1) to each data set. (c) Same data and axes as in (b). The dashed lines show the results expected from probability 
summation of independent responses to the two component frequencies, estimated from the fits to the data for individual sine 

waves in odd phase (Expt 1). 

Discussion 

The results of Expt 2 show that sensitivity to com- 
pound shearing velocity fields depends on the relative 
phase of the components, and cannot be explained by 
independent detection of the components. Sensitivity 
was greater for the phase combination with the steeper 
velocity gradient and smaller peak amplitude even when 
the amplitudes of the sinusoidal components were 
equated for the two compound waveforms. The results 
therefore support the interpretation that the mechanisms 
underlying detection of motion are particularly sensitive 
to steep velocity gradients. 

EXPERIMENT 3 

In Expts 1 and 2 observers showed greater sensitivity 
to the "squarer" velocity profiles. Besides sharper vel- 
ocity gradients, these profiles also possessed larger areas 
of uniform velocity. Even though our analysis of Expt 1 
showed that at threshold the total integrated motion in 
each lobe of the fl square waves was less than the 
integrated motion in the fl sine waves, in Expt 3 we 
directly compared the importance of motion boundaries 
in motion detection to that of extended regions of 
uniform velocity. 

Stimuli 

Fluted velocity waveforms were generated by sub- 
tracting the fundamental sinusoidal component from a 
square wave in odd phase, as shown in Fig. 10(a). The 
resulting stimulus retains the sharp motion boundary 
and the peak amplitude of the square wave, while the 
area of uniform motion in each lobe is greatly reduced, 
as shown in Fig. 10(b). Flutes were generated for square 
waves with the fundamental frequencies fl, f3, and f9 
equal to 0.133, 0.4, and 1.2 c/deg. All stimuli were in odd 
phase, so that a motion boundary was located at the 
fixation point. Since the amplitude of the fundamental 
harmonic is 1.27 times that of the square wave, subtract- 
ing the fundamental component produces a small under- 
shoot in the waveform within each lobe. 

Procedure 

We used the same two-interval forced-choice pro- 
cedure as in Expt 1. All three frequencies of the 
fluted waveform and all test velocities, were interleaved 
randomly within one test session. For observer WLS, 
data were collected over eight sessions for a total of 
80 presentations of each velocity. For observer AI, 
50 trials spread over 10 sessions were run for each 
condition. 
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FIGURE. 9. Results of Expt 2 for observer AI. All graphical conventions are identical to Fig. 8. 

Results 

Psychometric curves for the detection of  motion for 
the three fluted velocity profiles are shown together with 
results for the corresponding square waves in Figs 11 
and 12 for observers WLS and AI, respectively. Results 
for fluted waveforms are shown as open diamonds, 
results for square waves as solid squares. The best fitting 
psychometric functions from equation (1) are shown as 
solid lines through each data set. 

In the top panel in Fig. 11, the psychometric curve for 
flutes is slightly to the left of  the curve for square waves. 
That  is, sensitivity to motion is slightly greater with the 
fluted waveform than with the corresponding square 
wave at fl  for observer WLS. A fit with a single curve 

(a) 

square  f l  " ~  - sin f l  

(b) 

f lu te  f l  

FIGURE 10. Velocity fields used in Expt 3. (a) The fundamental 
sinusoidal component is subtracted from a square wave in odd phase. 
The higher harmonic components remain unchanged. (b) The resulting 
fluted waveform retains the sharp motion boundaries between oppos- 
ing directions of motion but lacks extended areas of uniform motion. 
Flutes were generated from square waves with fundamental frequen- 

cies fl, f3, and f9. 

was significantly worse than with two separate curves. 
For  observer AI, as shown in Fig. 12, psychometric 
curves are similar for flutes and square waves. One curve 
fit the two data sets as well as two separate curves. For  
f3 and f9, open diamonds plot to the right of  solid 
squares. That  is, sensitivity to motion was lower for  
flutes than for the corresponding square waves. This was 
true for both observers. In addition, sensitivity for flutes 
at f9 was lower than at t3 for both observers. 

Discussion 

The result that at fl sensitivity to motion was no lower 
for flutes than for square waves indicates that for an 
extended stimulus large areas of  uniform motion are not 
as important  as sharp motion boundaries in detecting 
motion. Since the flutes differ from square waves only 
in the exclusion of  the fundamental harmonic, the 
sensitivity to fl  flutes can be explained by the presence 
of  higher harmonics combined in a manner  to produce 
the sharp motion boundary. I f  local motion signals need 
to be sampled over some minimum area, the loss of  
sensitivity for flutes at f3 and f9 and to square waves 
at f27 could be because the largest integration area 
available from these stimuli is less than the minimum 
required for motion. 

SUMMARY OF EXPERIMENTAL RESULTS 

We have studied the role of  motion boundaries in the 
detection of motion. Taken together, the results show 
that sensitivity to motion is greatest when there is a 
sharp velocity discontinuity at the fixation point. For  
motion detection, given the presence of  a central motion 
boundary,  the velocity profile of  the rest of  the stimulus 
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FIGURE 11. Results of Expt 3 for observer WLS. Panels show 
psychometric curves for the detection of motion of fluted velocity 
profiles (open diamonds). For comparison, results for square waves in 
odd phase are shown as solid squares. Each panel shows results for 
waveforms of one fundamental spatial frequency: Solid curves show 
the best fitting psychometric function (Eqn. 1) for each data set. Peak 
velocity amplitude of each waveform is given on the abscissa. The 
ordinate shows the percentage of correct choices of the interval with 
the motion signal. The horizontal dotted line in each panel shows 50%, 

or chance, performance. 

is essentially irrelevant as long as there is a minimal 
integration area for velocity on either side of  the bound- 
ary. As the phase of  a compound velocity profile is 
changed, sensitivity is a function of  the eccentricity of  
the most central motion boundaries. When sinusoidal 
velocity profiles are combined to generate sharp velocity 
gradients, sensitivity is greater than would be predicted 
from probability summation of responses to individual 
components.  

It is important  to list the set of  conditions that the 
results of  the present experiments may be limited to. 
First, these experiments were restricted to fairly low 
velocities at which motion could barely be detected. The 
processing of  motion boundaries at higher velocities 
remains to be explored. Second, in these stimuli, all 
velocity components were parallel to each other and 
uniform along each horizontal line. Under conditions 
that involve transparent motion, where velocity com- 
ponents in different directions may overlap within a 
region, it has been reported that there is a greater 
sensitivity for shearing than for uniform motion, but no 
special role for motion boundaries (Watson & Eckert, 
1994). Under conditions of  transparent motion, motion 

O • 

o 

100 

50 ............................ 

t~ 100 ~ .  

50 ............................... 

f9 100 ~ .  

50 .... ......... - 
I i 

0 0.1 0.2 
deg/sec 

peak amplitude 
FIGURE 12. Results of Expt 3 for observer AI. All graphical 

conventions are identical to Fig. 11. 

boundaries may not be as useful in segregating areas of  
uniform motion. Addition of  noise may also disrupt 
detection of  motion boundaries. For  example, van 
D o o m  and Koenderink (1982, 1983) found that the 
percept of  a motion boundary disappeared with the 
addition of random noise before the percept of  coherent 
motion. Since observers can identify the direction 
of  coherent motion when random motion is added to 
coherent motion in random-dot  fields (Watamaniuk,  
Sekuler & Williams, 1989), this class of  stimuli may 
require the observer to extract the mean direction of the 
random dots while ignoring the presence of local sharp 
velocity gradients in random directions. The addition of 
random noise or transparency to the stimulus may 
thus change the nature of  the observer 's task from our 
conditions. 

The results of  the experiments in this study suggest 
that motion boundaries may in fact play an important  
role in the processing of  motion information. An 
enhanced representation of motion boundaries would be 
useful in segregating moving objects from one another 
and the background, and helping to establish a depth 
layering of objects. The empirical results place con- 
straints on mechanistic models of  motion detection. 

MECHANISTIC MODEL FOR THE PROCESSING 
OF SHEARING MOTION 

In this section we present a model that can 
account for the experimental results of  this study. This 
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model is based on mechanisms whose surround 
response to motion is subtracted from the center's 
response to motion in the same direction. We used an 
array of such units to generate probabilities of correct 
responses to the different velocity profiles used in the 
experiments. 

Opposed center-surround motion mechanisms were 
previously suggested but not fit to experimental data 
(Nakayama & Loomis, 1974; Nakayama & Tyler, 
1981; Clocksin, 1980; Koenderink & van Doorn, 1992). 
By analogy to the processing of luminance contrast by 
center-surround units (Ratliff, 1965), motion center- 
surround units will respond well to a shearing stimulus. 
It is far from clear, though, whether such a model is 
sufficient to account for t.he variety of results presented 
in this study. 

In this section we will begin by giving a detailed 
description of the model, followed by a discussion of 
its performance in explaining the experimental results. 
This model is only one way to implement the principles 
necessary to capture the properties of the data, and we 
will discuss these principles in the context of the model. 
Subsequently, we will de,;cribe other ways to implement 
models with similar properties. For this, we discuss 
parameters that we left out for simplicity but which 

could be added as plausible properties of a spatial 
sampling system. In addition, we discuss the elements 
necessary to successfully implement a model in which the 
receptive field shape consists of adjacent opposed lobes. 
Finally, we discuss some plausible receptive fields and 
computational approaches that do not give satisfactory 
results. 

Description of model 
In the model we assume that the velocity at each 

point in the stimulus is sampled by elementary motion- 
sensing mechanisms, shown as a column of gray ovals on 
the left of Fig. 13(a). These units are all maximally 
sensitive to motion along the horizontal, giving signed 
responses to motion in the two directions along that 
axis, and can be similar to any of a number of spatio- 
temporal energy mechanisms, e.g. Adelson and Bergen 
(1985). For simplicity we assume that the image is 
sampled by mechanisms whose output corresponds to 
the velocity at that point in the image. Even though the 
responses of model motion-sensing mechanisms are 
generally not linear over large velocity ranges, and often 
are non-monotonic, they can be considered approxi- 
mately linear within the small velocity range near motion 
thresholds. 
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FIGURE 13. (a) Schematic of model incorporating linear shear-sensing mechanisms used to explain the experimental results. 
The velocity on each line of dots in the stimulus is sampled with elementary motion-sensing mechanisms tuned to motion in 
the horizontal direction, shown as gray ellipses on the left. The stimulus is sampled with a column of 110 such non-overlapping 
motion-sensing mechanisms: 90 for the moving display (one for each line of dots), and 10 above and below the display window. 
The responses of motion-sensing mechanisms are then fed into a network which sums the weighted responses of nearby 
mechanisms, as indicated by the rightward arrows. The heights of the Gaussian curves labeled "Center" and "Surround" 
indicate the weight assigned to each response. The center unit sums responses over a smaller region than the surround unit. 
The summed values of the center-surround subunits are then subtracted from each other, and constitute the response of the 
difference of Gaussians, or shear-sensing mechanism, shown on the right. One pair of center and surround subunits is centered 
over each elementary motion-sensing mechanism. (b) Sizes of shear-sensing mechanisms vary with eccentricity. Units near the 
central fixation point are smaller, while units further in the periphery are larger. Sizes of the center and surround subunits 
are scaled independently of one another. Responses of all shear-sensing mechanisms to a stimulus are combined through 

probability summation to generate probability of correct response. 
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At the next stage, in Fig. 13(a), the outputs of the 
local motion sensors are combined linearly through 
spatial weighting functions into shear sensors by feeding 
the responses into two summation units, labeled Center 
and Surround. The height of the Gaussian curves rep- 
resents the weight assigned to the output of each elemen- 
tary motion-sensing mechanism. The summed values of 
the Center and Surround subunits are then subtracted 
from each other, and constitute the response of the 
difference of Gaussians shown on the right. 

Responses are summed linearly within each Gaussian, 
as described in equations (3) and (4): 

{ [ ' c j - -  _ v ( , )  
Gc Wc (j ) %//~ i=1 

12G Wc(j) J ] ,lO{ [ , 
sj = ,=,Y ~ (i) m w ~ ( j ) , f ~  

C and S designate the Gaussians that constitute the 
center and the surround, respectively with standard 
deviations G and G in degrees of visual angle. Both 

Gaussians have unit area and G < as. The parameter j 
designates the unit at which a Gaussian is centered. 
The velocity response v (i) at any point i is weighted by 
the Gaussian centered at j. The index i ranges over the 
110 sampling points described below, and the constant 
12 is used to convert number of points spanned by the 
Gaussian to degrees of visual angle. The values of W~ 
and Ws in equations (3) and (4) modify the widths of the 
Gaussians as a function of distance from the fixation 
point. The values of W~ and W~ are calculated using the 
following equations: 

1 l + m c ( 5 5 - j )  for 1~<j~<55 
W~(j) = + mc(j - 56) for 56 ~<j ~< 110' (5) 

1 l + m ~ ( 5 5 - j )  for 1~<j~<55 
Ws(J) = + m~(j - 56) for 56 ~<j ~< 110" (6) 

W c and Ws are equal to 1.0 for the two points in the 
center of the visual field and increase linearly towards the 
periphery with independent mc and ms. Thus, center and 
surround sizes were scaled independently of each other. 

The final stage of the shear-sensing mechanism in 
Fig. 13(a) consists of the difference of the summed center 
and surround responses: 

DOGj = C j -  Sj. (7) 

• • [] 0 

(a) [~ (~ (b) [~ ( 
O [] A 

(c) ~ (d) ? ~ 

I-.I I.-I 
0 

t-I 

I00 ~ • • 

fl 5 0 ~  ............... 

f3 100 ~ .  

50 ................................ 

f 9  100 [ .  

s o  .; ......... : ......... ; ......... , 

0 0.1 0.2 

deg/sec  

[] o 

L ............................... . . ~  ........................ 
I I I I | I 

0 0.l  0.2 0 0.1 0.2 

deg/sec  deg/sec  

p e a k  a m p l i t u d e  

.............. f3,.  

I I I ' 

0 0.1 0.2 

deg/sec 
peak amplitude 

FIGURE 14. Psychometric curves generated by the model (solid lines) and results of Expts 1, 2, and 3 for observer WLS. The 
six parameters of the model were optimized to simultaneously fit all psychometric curves (a¢ = 0.039, a~ = 0.324, m c = 0.984, 
m s = 0.118, a = 1.898, fl = 0.0545). (a, b) Results of Expt 1 for sine and square waves in odd and even phase. (c) Results of 

Expt 3 for fluted waveforms. (d) Results of Expt 2 for sums and differences of two sinusoidal components. 
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The schematic on the right of Fig. 13(b) shows 
how the sizes of shear-sensing mechanisms vary with 
eccentricity. Difference of Gaussians units are narrowest 
at the central fixation point, while peripheral units are 
broader. 

In this model we sampled the stimulus along only one 
vertical axis, since all the dots in a horizontal line in our 
stimuli moved at the same velocity. This reduction in the 
sampling space loses information about the responses of 
mechanisms tuned to motion in other directions, but 
since the greatest velocities are along the horizontal 
direction, thresholds are mainly determined by these 
components. This simplification was justified by the 
good fits to the data. The model can easily be expanded 
into two-dimensional shear detectors. 

The stimulus was sampled at 90 discrete points, which 
corresponded to the number of lines of dots in the 
experimental stimulus. Irt order to allow for responses of 
shear sensors whose centers lie outside the region of 
the stimulus, an additional 10 points were sampled 
above and below the edge of the stimulus, for a total 
of 110 points. Since dots could only move along the 
horizontal, velocities were designated negative for 
leftward motion and pc)sitive for rightward velocities. 
Velocity profiles were generated the same way as in the 
experiments, with a spatial waveform determining the 
velocity on each line of the stimulus. Velocity profiles 

were restricted to the central 90 sampling points in the 
model, with the surrounding 20 points being assigned 
values of zero. 

A shear sensor was centered at each of the 110 points 
sampled in the image. The responses of all l l0 shear 
sensors were combined probabilistically using the Quick 
(1974) psychometric function: 

l l 0  

/)detect = 1 -- r-[ [1 - (1 - -  2 - ( D O G y / ~ ' ) ] .  (8) 
j= l  

Pdetect is the probability of detecting motion, the par- 
ameter fl determines the response at which detection 
equals 50% for a single shear sensor while ct is used to 
vary the slope of the psychometric curve. The prob- 
ability of being correct in a two-interval forced-choice 
procedure needs to incorporate those trials in which 
motion was not detected but a correct response was 
given by chance: 

Pc . . . .  t = Pdetect + (1 --/'detect)/2" (9) 

In this form, the model has six free parameters: ac and 
as, the standard deviations of the center and surround 
Gaussians, m c and ms, the slopes of the increase in size 
with eccentricity of the center and surround, and 
and 13 for the function generating probability of detec- 
tion. A Nelder-Mead (Nelder & Mead, 1965) error- 
minimization routine was used to find the parameter 
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FIGURE 15. Psychometric curves generated by the model (solid lines) and results of Expts 1, 2, and 3 for observer AI. 
Parameter settings tbr optimal fit: ~c=0.06, (rs=0.273, mc=0.653, ms=0.123, ~ =2.219, fl =0.0368. All graphical 

conventions are identical to Fig. 14. 
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settings giving the best simultaneous fit of  the model's 
probabilities of  detection to all data sets for each 
observer. In this way, six parameters were used to fit 
19 psychometric curves containing a total of  114 data 
points for observer WLS and 133 data points for 
observer AI. 

Modeling results 

Probabilities of  detection generated by the model and 
the corresponding experimental results are shown in 
Figs 14 and 15 for observers WLS and AI, respectively. 
The model's parameter settings were different for each 
observer, and are given in the figure captions. 

It is apparent that the model's predictions fit the 
complete data sets for both observers almost as well as 
the psychometric functions fit previously to each curve 
separately. The results of  Expt 1 on sensitivity to square- 
wave and sinusoidal velocity fields are shown in 
Figs 14(a, b) and 15(a, b). In columns (a), the model 
accounts for the greater sensitivity to square waves than 
to sine waves in odd phase. In addition, the increase in 
sensitivity to sine waves at increasing frequencies is also 
accounted for. In columns (b), the model exhibits the 
decreased sensitivity for square-wave stimuli in even 
phase. Furthermore, sensitivity for square waves in even 
phase increases for higher frequencies. For  observer AI, 
the model psychometric curve for square waves in even 
phase at fl is somewhat shallower than the experimental 
results, shown as open squares. The model also captures 
the greater sensitivity to square waves than to sine waves 
when both are in even phase. Finally, the model's 
responses to sine waves in odd and even phase are very 
similar, reflecting the experimental results. 

Results for Expt 2 on combinations of sinusoidal 
waveforms are shown in Figs 14(d) and 15(d). The model 
exhibits the greater sensitivity t ° the compound stimulus 
with the steeper velocity gradient for both frequency 
combinations tested and for both observers. The model's 
predictions for fl + f3, shown as lines fit to the squares 
in the top panels, are somewhat to the right of  the 
experimental results, indicating that the model is less 
sensitive to the stimulus with the steeper velocity gradi- 
ent than observed empirically. For  observer WLS, the 
model exaggerated the difference between f l -  f3 and 
f3 - f9 by generating a lesser sensitivity to the stimulus 
with the shallower velocity gradient than expected from 
the experimental results. 

Figures 14(c) and 15(c) show results for fluted wave- 
forms from Expt 3. For observer AI, the fits are quite 
good, and show that the lack of  an area of  uniform 
motion in flutes at fl does not affect sensitivity to 
motion. The model generates a somewhat greater sensi- 
tivity for the flute at f3 than the empirical results. Model 
fits are also good for observer WLS, but point out a 
limitation of  the model: the empirical psychometric 
curves for flutes fl are steeper than the curves for the 
corresponding square waves. The curves generated by 
the model could fit the square-wave data, but are 
somewhat shallower than the experimental results for 
flutes. Square-wave and fluted waveforms employed in 

these experiments have similar motion boundaries, but 
differed in the strength of  the motion signal in the nearby 
regions. The response of  a linear receptive field, which 
simply sums responses within a region, will be smaller at 
the motion boundary of  the flute than of  the square wave 
simply because the available motion signal is smaller 
over the area covered by the receptive field. Thus, 
the response to the fluted waveform cannot be greater 
than to the corresponding square wave. The difference 
between the responses at the motion boundaries of the 
two waveforms can be reduced by making the receptive 
field small, so that the difference in motion signal over 
the integrated area is minimized. 

The key properties of  the model that explain differ- 
ences in sensitivity between different waveforms are 
captured by the center-surround antagonism and the 
independent scaling of  center and surround receptive 
field sizes. The center-surround antagonism establishes 
the preference for shearing motion, as well as the 
bandpass characteristics for sinusoidal velocity fields. 
For very low frequencies of  the waveforms, the 
responses of  the center and the surround fields will tend 
to be similar, and thus will tend to cancel out. For 
very high frequencies, leftward and rightward com- 
ponents will tend to cancel out within each region, while 
for intermediate frequencies responses can differ greatly 
between center and surround, leading to maximal 
responsivity. 

Scaling the receptive field sizes with eccentricity makes 
the system sensitive to the phase of  the compound 
velocity waveforms for two reasons. First, the frequency 
characteristics change with eccentricity. Second, by scal- 
ing the center and surround independently, sensitivity to 
shearing motion can be reduced as a steep function of  
eccentricity. Figure 16(a, b) shows the sizes of  the center 
and surround subunits at each eccentricity for the two 
observers as a function of  distance from the fixation 
point, where the edge of the stimulus corresponds to 
3.75deg. Sizes are plotted as solid lines for center 
subunits and as dashed lines for surround subunits. 
The ordinate gives the size of  each subunit in terms of  the 
standard deviation of the pooling Gaussian in degrees of 
visual angle. At the fixation point, tr c --0.039 deg and 
a s = 0.324 deg for observer WLS; and tr c = 0.06 deg and 
tr s = 0.273 deg for observer AI. Parameters for observer 
AI in Fig. 16(b) show most clearly how the loss of 
sensitivity is achieved in the model: the sizes of center 
and surround become more similar towards the periph- 
ery until they become identical. Since the response of  a 
shear sensor depends on the difference in responses 
between center and surround subunits, the difference is 
always zero when center and surround are the same size 
and area, no matter what the input. 

Figure 16(c) elaborates this property of  the model by 
showing the ratio of  the sizes of  surround to sizes of 
center units as a function of  retinal eccentricity. A value 
of  1.0 indicates that both subunits are the same size and 
therefore that the shear sensor is insensitive to moving 
stimuli. Large values of the ratio indicate that the 
center and surround subunits differ greatly in size, and 



VISUAL PROCESSING OF MOTION BOUNDARIES 823 

( a )  

(b) 

(c) 

I I I 

3.75 0 3.75 

eccentricity (deg) 

i I I 

3.75 0 3.75 

eccentricity (deg) 

10 

WLS 

. . . . .  

I I I 

3.75 0 3.75 

eccentricity (deg) 

FIGURE 16. (a) Sizes of center and surround subunits at different 
eccentricities for parameter settings generating model fits shown 
in Fig. 14 for observer WLS. Solid and dotted lines show sizes of 
center and surround subunits, respectively, as a function of distance 
(in degrees of visual angle) from the fixation point. The edge of the 
stimulus corresponds to 3.75 (leg. The ordinate gives the SD of each 
subunit in degrees. At the fixation point, ac=0.039deg and 
tr S = 0.324 deg. 1 deg correspc.nds to 12 elementary motion-sensing 
units. (b) Sizes of center and surround subunits for model fits shown 
in Fig. 15 for observer AI. At the fixation point, trc= 0.06deg and 
cr~ = 0.273 deg. (c) Ratio of size of surround to size of center subunits 

taken from (a) and (b) for both observers. 

therefore respond well to shearing motion. The plot 
shows that ratios are greatest at the center of  the model 's  
visual field for both observers and decrease towards the 
periphery, so that sensitivity to shearing motion is 
minimal near the border of  the stimulus. In this way, 
sensitivity is greater when a square wave is positioned 
with the motion boundary at the fixation point than 
when the motion boundary is further in the periphery. 

In this model, where the sizes of  the receptive fields 
increased linearly [equations (5) and (6)] the increase 
with eccentricity is quite dramatic: for example, tr c is 

about  50 times greater at the edge of the stimulus than 
at the center for observer WLS. In a different version of 
the model we allowed the size to increase as a logarith- 
mic function which added a parameter  that determined 
the curvature of  the function relating size to eccentricity, 
allowing size to increase more near the center than the 
periphery. With that additional degree of  freedom, tr c 
was about  40 times greater at the edge of the stimulus 
than at the center, but the improvement of  fit was 
negligible. 

In order to test the importance of  independent size 
scaling for center and surround, we ran a simulation for 
the case in which the sizes were scaled at the same rate 
with eccentricity, i.e. the ratio of  the sizes of  center and 
surround was kept constant. I f  the sizes of  the receptive 
fields increase by the same factor, then sensitivity to 
motion boundaries cannot decrease to zero with eccen- 
tricity. With this constraint, the model failed to capture 
the empirical difference in sensitivity to square waves 
in even vs odd phase. In fact, the simulated sensitivity 
was greater for the square wave in even phase than in 
odd phase for frequency fl.  In odd phase, the stimulus 
contains three motion boundaries, two at the edges and 
one at the fixation point. The square wave stimulus 
in even phase has four motion boundaries, two at the 
edges and one on either side of  the fixation point. I f  the 
sensitivity to motion boundaries is not scaled down with 
eccentricity, the additional motion boundary in the even 
phase leads to the wrong prediction. Any successful 
model will therefore have to assign greater sensitivity to 
shearing motion at the center of  the visual field than in 
the periphery. 

Density or sensitivity of  shear sensors 

One way to assign greater importance to the detectors 
at the center is to stipulate that there are more of them 
per unit area than in the periphery. In that way, a 
stimulus in the center will elicit responses from a greater 
number of  units, all of  which contribute to detection by 
probability summation. In the psychometric function 
this can be simulated as: 

I 1 0  

Pdetect  = 1 - -  1 - I  [1 -- (1 -- 2 (DOGj//~)~)]density (j), (10) 
j = l  

where density >I 1. The function for density ( j )  is 
thus used to increase the number of  identical responses 
at any location j. We used a two-parameter  power 
function which allowed a non-linear change in density 
with eccentricity. The values of  density ( j )  are equal 
to 1.0 for the edge units 1 and 110 and increase 
towards the center, being highest at the fixation point. A 
density function can find justification in a system of 
receptive fields whose sizes increase with eccentricity 
because fewer receptive fields are needed in the per- 
iphery to provide the same degree of coverage. Similar 
properties have been proposed for mechanisms in the 
luminance domain (Rovamo & Virsu, 1979; Wilson & 
Bergen, 1979; Watson, 1983). The density value can also 
be interpreted as a factor by which the response of  a 
unit is weighted. In equation (10) density ( j )  can be 
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pulled inside the exponent, where it operates as a factor 
multiplying the response of each unit. This parameter 
effectively reduces the sensitivity of shear detectors in the 
periphery. 

We tested the performance of the model with the 
added density ( j )  function for the case where the scaling 
factors of the center and surround were yoked together• 
With the addition of the density ( j )  function, the fit of 
the yoked-size model to the data was as good as, and 
practically indistinguishable from, that of the model 
with independent size scaling• The diameter of receptive 
fields at the edge of the stimulus was only 14 times larger 
than at the center in this case. On the other hand, the 
postulated receptor density for the best fit was more than 
20,000 times greater in the center than in the periphery• 
It seems that a tradeoff is possible between density and 
scaling parameters while retaining a good fit to the data. 

.We were also interested in seeing what would happen 
with independent size scaling of center and surround 
regions in the standard model when the density function 
was added. The fit to the data was, of course, at least as 
good as before, but not perceptibly better. The sizes of 
center and surround regions providing optimum fit to 
the data are shown in Fig. 17(a, b) for observers WLS 
and AI. Locations of the weighting functions are shown 
on the abscissa, and the sizes on the ordinate• Surround 
units, shown as dashed lines, are always larger than 
center units, shown as solid lines. The ratios of surround 
and center are shown in Fig. 17(c) for both observers• 
Ratios are > 1.0 for both observers, indicating that shear 
sensors at all eccentricities respond well to shearing 
stimuli. Figure 17(d) shows values of density ( j )  for both 
observers• For observer AI, sensitivity is almost 20,000 
times greater at the fixation point than in the periphery• 
For observer WLS, periphery and fixation point differ by 
a factor of more than 2000. 

In the standard model without the density func- 
tion, decreased sensitivity in the periphery was 
achieved by making the sizes of the center and surround 
regions similar• Sensitivity can also be controlled by 
a density function• Factors determining sensitivity can 
thus be traded off against each other, as in the case 
of the relative sizes of the subunits and the density 
functions. 

First derivative of Gaussian receptive fields 
Another receptive field structure that would respond 

well to shearing motion is the derivative of a Gaussian. 
This receptive field possesses two lobes of opposing 
signs, so that response to a field of uniform motion is 
zero. Only one set of parameters is needed to scale the 
size of the receptive field. Larger fields, though, are not 
necessarily less sensitive to shearing motion than small 
receptive fields• We modeled the performance of such 
a system of receptive fields based on the derivative of 
a Gaussian whose sizes increased with eccentricity, 
and found that performance was not as good as with 
the difference of Gaussians. In particular, sensitivity 
to square waves in even phase was greater than for 
the odd phase, which was the opposite Of the experimen- 
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F I G U R E  17. (a) Sizes o f  center and surround subunits  at different 
eccentricities for model incorporating parameters for the density o f  
shear sensors at each location. Sizes are shown for parameter  settings 
giving the best fit to experimental results o f  observer WLS. Solid and 
dotted lines show sizes o f  center and surround subunits,  respectively, 
as a function o f  eccentricity. The ordinate gives the SD of  each subunit.  
At  the fixation point, ac = 0.037 deg, a s = 0.272 deg. For  details, 
see Fig. 16z(b) Sizes of  subunits  at different eccentricities for model fit 
to data  o f  observer AI. At  the fixation point, a c =  0.059deg, 
tr~ = 0.278 deg. (c) Ratio of  size of  surround to size of  center subunits  
for the two observers. (d) Density of  shear sensors for the two 
observers, given as the number  of  identical mechanisms generating 
identical responses at each location. A greater number  o f  mechanisms 
corresponds to a greater contribution to detection of  the stimulus. 
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tal results. Since sensitivity to shearing motion did 
not decrease markedly with eccentricity in this model, 
sensitivity for the stimulus with the greater number of 
motion boundaries prewuled. 

This problem could be dealt with by introducing the 
density function discussed earlier. In this way, sensitivity 
to shearing motion was greatest at the fixation point, 
and declined towards the periphery. With this addi- 
tional property, the model with a derivative of Gaussian 
receptive field profile captured the properties of the 
data. Performance was comparable to the difference of 
Gaussians model. 

It seems, then, that a number of receptive field 
structures will perform adequately to explain the data, 
provided they incorporate the key properties of sensi- 
tivity to shearing motion, size scaling with eccentri- 
city, and a decrease in density or sensitivity in the 
periphery. 

Simple loss of sensitivity in the periphery cannot 
substitute for size scaling. We tested the model incorpo- 
rating the derivative of a Gaussian receptive field profile 
without size scaling but with a decrease of sensitivity in 
the periphery. For the best fit, there were a number of 
mismatches between data and model. In particular,, the 
model showed too high a sensitivity to flutes at f3 and 
f9 as well as square waw:s at f9, while sensitivity was too 
low for sine waves at fl lind f3. That is, the effects of the 
change in the preferred frequency range that comes with 
size scaling cannot be simulated with a simple loss of 
sensitivity in the periphery. 

Gaussian receptive f ields 

For completeness we tested a simple Gaussian weight- 
ing function, i.e. a unit that pools motion responses in 
one direction without an opposed region. Not surpris- 
ingly, this model categorically failed to match the 
data. The lack of an :inhibitory surround makes for 
a lowpass response spectrum for sine waves, while 
the results shown in Fig. 6 exhibit a bandpass relation- 
ship between spatial frequency and sensitivity. Further- 
more, since the simple Gaussian receptive field does 
not give a strong response to motion boundaries, 
responses to square waves in different phases were 
practically identical, unlike the experimental data. The 
Gaussian weighting function will in fact blur motion 
boundaries. The information that is lost in that way is 
apparently critical for the performance of the visual 
system. 

SUMMARY OF MODELING RESULTS 

Experimental results on the detection of shearing 
motion show a greater sensitivity for stimuli with 
sharp motion boundaries than for shallower velocity 
gradients. Sensitivity decreases when motion boundaries 
are not at the fixation point. In addition, experiments 
with fluted waveforms showed that large areas of 
uniform motion are not critical in determining sensiti- 
vity to motion when motion boundaries are located 
at the fixation point. These properties of the data could 
"qR 35/6--D 

be captured by a model of opponent center-surround 
units that sum responses of motion-sensing units. The 
general properties of the model are based on the 
following: 

(a) linear opponent regions sampling the velocity 
domain; 

(b) size-scaling with eccentricity; 
(c) decrease in density or sensitivity with eccentricity. 

We tested two different versions of this model, 
one with a difference of Gaussians arrangement, 
the other based on the derivative of a Gaussian, and 
results were very similar. Models that did not possess 
the three properties listed above failed to perform 
adequately. 

The model with linear opponent regions explains the 
results for square and sinusoidal waves at different 
frequencies shown in Fig. 6. The points shown are the 
80% detection probabilities for the empirical psycho- 
metric curves, which were fit very precisely by the model 
(Figs 14 and 15). Therefore, the model exhibits the same 
bandpass characteristics for sine waves and the low-pass 
function for square waves as in Fig. 6. For frequencies 
below 1.2 c/deg, thresholds increase for sine waves but 
remain constant for square waves in odd phase. In the 
model, sensitivity to sharp velocity gradients is highest 
at the center, and decreases towards the periphery. As 
long as a motion boundary is located at the fixation 
point, sensitivity will remain largely unaffected by de- 
creasing frequency of the square wave. For the sine 
wave, on the other hand, the velocity gradient decreases 
with decreasing frequency, so that sensitivity is expected 
to decrease. Units in the periphery may be more sensitive 
to the lower frequencies than units in the center, but 
since they are also less sensitive overall, they contribute 
less to detection. 

These modeling results show that complex data 
on sensitivity to shearing motion can be explained by 
relatively simple processes. The results suggest that steep 
velocity gradients play an important role in the process- 
ing of motion information, and that computational 
models making use of that information could help 
segment images. 
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